Skip to yearly menu bar Skip to main content


Kernel Observers: Systems-Theoretic Modeling and Inference of Spatiotemporally Evolving Processes

Hassan A Kingravi · Harshal R Maske · Girish Chowdhary

Area 5+6+7+8 #144

Keywords: [ Time Series Analysis ] [ Gaussian Processes ] [ Model Selection and Structure Learning ] [ Kernel Methods ]


We consider the problem of estimating the latent state of a spatiotemporally evolving continuous function using very few sensor measurements. We show that layering a dynamical systems prior over temporal evolution of weights of a kernel model is a valid approach to spatiotemporal modeling that does not necessarily require the design of complex nonstationary kernels. Furthermore, we show that such a predictive model can be utilized to determine sensing locations that guarantee that the hidden state of the phenomena can be recovered with very few measurements. We provide sufficient conditions on the number and spatial location of samples required to guarantee state recovery, and provide a lower bound on the minimum number of samples required to robustly infer the hidden states. Our approach outperforms existing methods in numerical experiments.

Live content is unavailable. Log in and register to view live content