Skip to yearly menu bar Skip to main content


Poster

Robust k-means: a Theoretical Revisit

ALEXANDROS GEORGOGIANNIS

Area 5+6+7+8 #76

Keywords: [ Clustering ] [ Learning Theory ] [ (Other) Optimization ]


Abstract:

Over the last years, many variations of the quadratic k-means clustering procedure have been proposed, all aiming to robustify the performance of the algorithm in the presence of outliers. In general terms, two main approaches have been developed: one based on penalized regularization methods, and one based on trimming functions. In this work, we present a theoretical analysis of the robustness and consistency properties of a variant of the classical quadratic k-means algorithm, the robust k-means, which borrows ideas from outlier detection in regression. We show that two outliers in a dataset are enough to breakdown this clustering procedure. However, if we focus on “well-structured” datasets, then robust k-means can recover the underlying cluster structure in spite of the outliers. Finally, we show that, with slight modifications, the most general non-asymptotic results for consistency of quadratic k-means remain valid for this robust variant.

Live content is unavailable. Log in and register to view live content