Skip to yearly menu bar Skip to main content


Poster

Reconstructing Parameters of Spreading Models from Partial Observations

Andrey Lokhov

Area 5+6+7+8 #70

Keywords: [ (Application) Social Networks ] [ Model Selection and Structure Learning ] [ Graphical Models ]


Abstract:

Spreading processes are often modelled as a stochastic dynamics occurring on top of a given network with edge weights corresponding to the transmission probabilities. Knowledge of veracious transmission probabilities is essential for prediction, optimization, and control of diffusion dynamics. Unfortunately, in most cases the transmission rates are unknown and need to be reconstructed from the spreading data. Moreover, in realistic settings it is impossible to monitor the state of each node at every time, and thus the data is highly incomplete. We introduce an efficient dynamic message-passing algorithm, which is able to reconstruct parameters of the spreading model given only partial information on the activation times of nodes in the network. The method is generalizable to a large class of dynamic models, as well to the case of temporal graphs.

Live content is unavailable. Log in and register to view live content