Skip to yearly menu bar Skip to main content


Talk
in
Workshop: OPT 2016: Optimization for Machine Learning

Invited Talk: Oracle Complexity of Second-Order Methods for Finite-Sum Problems (Ohad Shamir, Weizmann Institute of Science)

[ ]
2016 Talk

Abstract:

Finite-sum optimization problems are ubiquitous in machine learning, and are commonly solved using first-order methods which rely on gradient computations. Recently, there has been growing interest in second-order methods, which rely on both gradients and Hessians. In principle, second-order methods can require much fewer iterations than first-order methods, and hold the promise for more efficient algorithms. Although computing and manipulating Hessians is prohibitive for high-dimensional problems in general, the Hessians of individual functions in finite-sum problems can often be efficiently computed, e.g. because they possess a low-rank structure. Can second-order information indeed be used to solve such problems more efficiently? In this talk, I'll provide evidence that the answer -- perhaps surprisingly -- is negative, at least in terms of worst-case guarantees. However, I'll also discuss what additional assumptions and algorithmic approaches might potentially circumvent this negative result. Joint work with Yossi Arjevani.

Live content is unavailable. Log in and register to view live content