Skip to yearly menu bar Skip to main content


Session

Oral Session 8

Sanjiv Kumar

Abstract:
Chat is not available.

Wed 10 Dec. 13:20 - 13:40 PST

A* Sampling

Chris Maddison · Danny Tarlow · Tom Minka

The problem of drawing samples from a discrete distribution can be converted into a discrete optimization problem. In this work, we show how sampling from a continuous distribution can be converted into an optimization problem over continuous space. Central to the method is a stochastic process recently described in mathematical statistics that we call the Gumbel process. We present a new construction of the Gumbel process and A* sampling, a practical generic sampling algorithm that searches for the maximum of a Gumbel process using A* search. We analyze the correctness and convergence time of A* sampling and demonstrate empirically that it makes more efficient use of bound and likelihood evaluations than the most closely related adaptive rejection sampling-based algorithms.

Wed 10 Dec. 13:40 - 14:00 PST

Asynchronous Anytime Sequential Monte Carlo

Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh

We introduce a new sequential Monte Carlo algorithm we call the particle cascade. The particle cascade is an asynchronous, anytime alternative to traditional sequential Monte Carlo algorithms that is amenable to parallel and distributed implementations. It uses no barrier synchronizations which leads to improved particle throughput and memory efficiency. It is an anytime algorithm in the sense that it can be run forever to emit an unbounded number of particles while keeping within a fixed memory budget. We prove that the particle cascade provides an unbiased marginal likelihood estimator which can be straightforwardly plugged into existing pseudo-marginal methods.

Wed 10 Dec. 14:00 - 14:20 PST

Probabilistic ODE Solvers with Runge-Kutta Means

Michael Schober · David Duvenaud · Philipp Hennig

Runge-Kutta methods are the classic family of solvers for ordinary differential equations (ODEs), and the basis for the state of the art. Like most numerical methods, they return point estimates. We construct a family of probabilistic numerical methods that instead return a Gauss-Markov process defining a probability distribution over the ODE solution. In contrast to prior work, we construct this family such that posterior means match the outputs of the Runge-Kutta family exactly, thus inheriting their proven good properties. Remaining degrees of freedom not identified by the match to Runge-Kutta are chosen such that the posterior probability measure fits the observed structure of the ODE. Our results shed light on the structure of Runge-Kutta solvers from a new direction, provide a richer, probabilistic output, have low computational cost, and raise new research questions.

Wed 10 Dec. 14:20 - 14:40 PST

A Wild Bootstrap for Degenerate Kernel Tests

Kacper P Chwialkowski · Dino Sejdinovic · Arthur Gretton

A wild bootstrap method for nonparametric hypothesis tests based on kernel distribution embeddings is proposed. This bootstrap method is used to construct provably consistent tests that apply to random processes, for which the naive permutation-based bootstrap fails. It applies to a large group of kernel tests based on V-statistics, which are degenerate under the null hypothesis, and non-degenerate elsewhere. To illustrate this approach, we construct a two-sample test, an instantaneous independence test and a multiple lag independence test for time series. In experiments, the wild bootstrap gives strong performance on synthetic examples, on audio data, and in performance benchmarking for the Gibbs sampler. The code is available at https://github.com/kacperChwialkowski/wildBootstrap.