Skip to yearly menu bar Skip to main content


Poster

Simple MAP Inference via Low-Rank Relaxations

Roy Frostig · Sida Wang · Percy Liang · Christopher D Manning

Level 2, room 210D

Abstract:

We focus on the problem of maximum a posteriori (MAP) inference in Markov random fields with binary variables and pairwise interactions. For this common subclass of inference tasks, we consider low-rank relaxations that interpolate between the discrete problem and its full-rank semidefinite relaxation, followed by randomized rounding. We develop new theoretical bounds studying the effect of rank, showing that as the rank grows, the relaxed objective increases but saturates, and that the fraction in objective value retained by the rounded discrete solution decreases. In practice, we show two algorithms for optimizing the low-rank objectives which are simple to implement, enjoy ties to the underlying theory, and outperform existing approaches on benchmark MAP inference tasks.

Live content is unavailable. Log in and register to view live content