Skip to yearly menu bar Skip to main content


Poster

Projecting Markov Random Field Parameters for Fast Mixing

Xianghang Liu · Justin Domke

Level 2, room 210D

Abstract:

Markov chain Monte Carlo (MCMC) algorithms are simple and extremely powerful techniques to sample from almost arbitrary distributions. The flaw in practice is that it can take a large and/or unknown amount of time to converge to the stationary distribution. This paper gives sufficient conditions to guarantee that univariate Gibbs sampling on Markov Random Fields (MRFs) will be fast mixing, in a precise sense. Further, an algorithm is given to project onto this set of fast-mixing parameters in the Euclidean norm. Following recent work, we give an example use of this to project in various divergence measures, comparing of univariate marginals obtained by sampling after projection to common variational methods and Gibbs sampling on the original parameters.

Live content is unavailable. Log in and register to view live content