Poster
General Table Completion using a Bayesian Nonparametric Model
Isabel Valera · Zoubin Ghahramani
Level 2, room 210D
Even though heterogeneous databases can be found in a broad variety of applications, there exists a lack of tools for estimating missing data in such databases. In this paper, we provide an efficient and robust table completion tool, based on a Bayesian nonparametric latent feature model. In particular, we propose a general observation model for the Indian buffet process (IBP) adapted to mixed continuous (real-valued and positive real-valued) and discrete (categorical, ordinal and count) observations. Then, we propose an inference algorithm that scales linearly with the number of observations. Finally, our experiments over five real databases show that the proposed approach provides more robust and accurate estimates than the standard IBP and the Bayesian probabilistic matrix factorization with Gaussian observations.
Live content is unavailable. Log in and register to view live content