Poster
Dimensionality Reduction with Subspace Structure Preservation
Devansh Arpit · Ifeoma Nwogu · Venu Govindaraju
Level 2, room 210D
[
Abstract
]
Abstract:
Modeling data as being sampled from a union of independent subspaces has been widely applied to a number of real world applications. However, dimensionality reduction approaches that theoretically preserve this independence assumption have not been well studied. Our key contribution is to show that $2K$ projection vectors are sufficient for the independence preservation of any $K$ class data sampled from a union of independent subspaces. It is this non-trivial observation that we use for designing our dimensionality reduction technique. In this paper, we propose a novel dimensionality reduction algorithm that theoretically preserves this structure for a given dataset. We support our theoretical analysis with empirical results on both synthetic and real world data achieving \textit{state-of-the-art} results compared to popular dimensionality reduction techniques.
Live content is unavailable. Log in and register to view live content