Skip to yearly menu bar Skip to main content


Poster

A Synaptical Story of Persistent Activity with Graded Lifetime in a Neural System

Yuanyuan Mi · Luozheng Li · Dahui Wang · Si Wu

Level 2, room 210D

Abstract:

Persistent activity refers to the phenomenon that cortical neurons keep firing even after the stimulus triggering the initial neuronal responses is moved. Persistent activity is widely believed to be the substrate for a neural system retaining a memory trace of the stimulus information. In a conventional view, persistent activity is regarded as an attractor of the network dynamics, but it faces a challenge of how to be closed properly. Here, in contrast to the view of attractor, we consider that the stimulus information is encoded in a marginally unstable state of the network which decays very slowly and exhibits persistent firing for a prolonged duration. We propose a simple yet effective mechanism to achieve this goal, which utilizes the property of short-term plasticity (STP) of neuronal synapses. STP has two forms, short-term depression (STD) and short-term facilitation (STF), which have opposite effects on retaining neuronal responses. We find that by properly combining STF and STD, a neural system can hold persistent activity of graded lifetime, and that persistent activity fades away naturally without relying on an external drive. The implications of these results on neural information representation are discussed.

Live content is unavailable. Log in and register to view live content