Poster
Approximate inference in latent Gaussian-Markov models from continuous time observations
Botond Cseke · Manfred Opper · Guido Sanguinetti
Harrah's Special Events Center, 2nd Floor
We propose an approximate inference algorithm for continuous time Gaussian-Markov process models with both discrete and continuous time likelihoods. We show that the continuous time limit of the expectation propagation algorithm exists and results in a hybrid fixed point iteration consisting of (1) expectation propagation updates for the discrete time terms and (2) variational updates for the continuous time term. We introduce corrections methods that improve on the marginals of the approximation. This approach extends the classical Kalman-Bucy smoothing procedure to non-Gaussian observations, enabling continuous-time inference in a variety of models, including spiking neuronal models (state-space models with point process observations) and box likelihood models. Experimental results on real and simulated data demonstrate high distributional accuracy and significant computational savings compared to discrete-time approaches in a neural application.
Live content is unavailable. Log in and register to view live content