We investigate the representational power of sum-product networks (computation networks analogous to neural networks, but whose individual units compute either products or weighted sums), through a theoretical analysis that compares deep (multiple hidden layers) vs. shallow (one hidden layer) architectures. We prove there exist families of functions that can be represented much more efficiently with a deep network than with a shallow one, i.e. with substantially fewer hidden units. Such results were not available until now, and contribute to motivate recent research involving learning of deep sum-product networks, and more generally motivate research in Deep Learning.
Live content is unavailable. Log in and register to view live content