Skip to yearly menu bar Skip to main content


Poster

On U-processes and clustering performance

Stéphan Clémençon


Abstract:

Many clustering techniques aim at optimizing empirical criteria that are of the form of a U-statistic of degree two. Given a measure of dissimilarity between pairs of observations, the goal is to minimize the within cluster point scatter over a class of partitions of the feature space. It is the purpose of this paper to define a general statistical framework, relying on the theory of U-processes, for studying the performance of such clustering methods. In this setup, under adequate assumptions on the complexity of the subsets forming the partition candidates, the excess of clustering risk is proved to be of the order O(1/\sqrt{n}). Based on recent results related to the tail behavior of degenerate U-processes, it is also shown how to establish tighter rate bounds. Model selection issues, related to the number of clusters forming the data partition in particular, are also considered.

Live content is unavailable. Log in and register to view live content