Skip to yearly menu bar Skip to main content


Poster

Estimation of Information Theoretic Measures for Continuous Random Variables

Fernando Perez-Cruz


Abstract:

We analyze the estimation of information theoretic measures of continuous random variables such as: differential entropy, mutual information or Kullback-Leibler divergence. The objective of this paper is two-fold. First, we prove that the information theoretic measure estimates using the k-nearest-neighbor density estimation with fixed k converge almost surely, even though the k-nearest-neighbor density estimation with fixed k does not converge to its true measure. Second, we show that the information theoretic measure estimates do not converge for k growing linearly with the number of samples. Nevertheless, these nonconvergent estimates can be used for solving the two-sample problem and assessing if two random variables are independent. We show that the two-sample and independence tests based on these nonconvergent estimates compare favorably with the maximum mean discrepancy test and the Hilbert Schmidt independence criterion, respectively.

Live content is unavailable. Log in and register to view live content