Cognitive control refers to the flexible deployment of memory and attention in response to task demands and current goals. Control is often studied experimentally by presenting sequences of stimuli, some demanding a response, and others modulating the stimulus-response mapping. In these tasks, participants must maintain information about the current stimulus-response mapping in working memory. Prominent theories of cognitive control use recurrent neural nets to implement working memory, and optimize memory utilization via reinforcement learning. We present a novel perspective on cognitive control in which working memory representations are intrinsically probabilistic, and control operations that maintain and update working memory are dynamically determined via probabilistic inference. We show that our model provides a parsimonious account of behavioral and neuroimaging data, and suggest that it offers an elegant conceptualization of control in which behavior can be cast as optimal, subject to limitations on learning and the rate of information processing. Moreover, our model provides insight into how task instructions can be directly translated into appropriate behavior and then efficiently refined with subsequent task experience.
Live content is unavailable. Log in and register to view live content