Skip to yearly menu bar Skip to main content


Poster

Continuously-adaptive discretization for message-passing algorithms

Michael Isard · John MacCormick · Kannan Achan


Abstract:

Continuously-Adaptive Discretization for Message-Passing (CAD-MP) is a new message-passing algorithm employing adaptive discretization. Most previous message-passing algorithms approximated arbitrary continuous probability distributions using either: a family of continuous distributions such as the exponential family; a particle-set of discrete samples; or a fixed, uniform discretization. In contrast, CAD-MP uses a discretization that is (i) non-uniform, and (ii) adaptive. The non-uniformity allows CAD-MP to localize interesting features (such as sharp peaks) in the marginal belief distributions with time complexity that scales logarithmically with precision, as opposed to uniform discretization which scales at best linearly. We give a principled method for altering the non-uniform discretization according to information-based measures. CAD-MP is shown in experiments on simulated data to estimate marginal beliefs much more precisely than competing approaches for the same computational expense.

Live content is unavailable. Log in and register to view live content