Skip to yearly menu bar Skip to main content


(13 events)   Timezone:  
Toggle Poster Visibility
Tutorial
Mon Dec 09 08:30 AM -- 10:30 AM (PST) @ West Exhibition Hall A
Deep Learning with Bayesian Principles
Mohammad Emtiyaz Khan
Tutorial
Mon Dec 09 08:30 AM -- 10:30 AM (PST) @ West Ballroom A + B
Human Behavior Modeling with Machine Learning: Opportunities and Challenges
Nuria M Oliver · Albert Ali Salah
Tutorial
Mon Dec 09 08:30 AM -- 10:30 AM (PST) @ West Exhibition Hall C + B3
Imitation Learning and its Application to Natural Language Generation
Kyunghyun Cho · Hal Daumé III
Tutorial
Mon Dec 09 11:15 AM -- 01:15 PM (PST) @ West Exhibition Hall C + B3
Efficient Processing of Deep Neural Network: from Algorithms to Hardware Architectures
Vivienne Sze
Tutorial
Mon Dec 09 11:15 AM -- 01:15 PM (PST) @ West Exhibition Hall A
Interpretable Comparison of Distributions and Models
Wittawat Jitkrittum · Danica J. Sutherland · Arthur Gretton
Tutorial
Mon Dec 09 11:15 AM -- 01:15 PM (PST) @ West Ballroom A + B
Machine Learning for Computational Biology and Health
Anna Goldenberg · Barbara Engelhardt
Tutorial
Mon Dec 09 02:45 PM -- 04:45 PM (PST) @ West Exhibition Hall C + B3
Reinforcement Learning: Past, Present, and Future Perspectives
Katja Hofmann
Tutorial
Mon Dec 09 02:45 PM -- 04:45 PM (PST) @ West Exhibition Hall A
Representation Learning and Fairness
Moustapha Cisse · Sanmi Koyejo
Tutorial
Mon Dec 09 02:45 PM -- 04:45 PM (PST) @ West Ballroom A + B
Synthetic Control
Alberto Abadie · Vishal Misra · Devavrat Shah
Oral
Wed Dec 11 04:25 PM -- 04:40 PM (PST) @ West Ballroom C
Distribution-Independent PAC Learning of Halfspaces with Massart Noise
Ilias Diakonikolas · Themis Gouleakis · Christos Tzamos
[ Paper [ Slides
Poster
Wed Dec 11 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #226
Distribution-Independent PAC Learning of Halfspaces with Massart Noise
Ilias Diakonikolas · Themis Gouleakis · Christos Tzamos
[ Paper [ Slides
Poster
Wed Dec 11 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #242
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
[ Paper [ Slides
Workshop
Sat Dec 14 08:00 AM -- 06:00 PM (PST) @ West 306
Learning with Temporal Point Processes
Manuel Rodriguez · Le Song · Isabel Valera · Yan Liu · Abir De · Hongyuan Zha