Processing math: 100%
Skip to yearly menu bar Skip to main content


( events)   Timezone:  
Poster
Tue Dec 05 06:30 PM -- 10:30 PM (PST) @ Pacific Ballroom #35
Efficient Sublinear-Regret Algorithms for Online Sparse Linear Regression with Limited Observation
Shinji Ito · Daisuke Hatano · Hanna Sumita · Akihiro Yabe · Takuro Fukunaga · Naonori Kakimura · Ken-Ichi Kawarabayashi
[ Paper
Online sparse linear regression is the task of applying linear regression analysis to examples arriving sequentially subject to a resource constraint that a limited number of features of examples can be observed. Despite its importance in many practical applications, it has been recently shown that there is no polynomial-time sublinear-regret algorithm unless NPBPP, and only an exponential-time sublinear-regret algorithm has been found. In this paper, we introduce mild assumptions to solve the problem. Under these assumptions, we present polynomial-time sublinear-regret algorithms for the online sparse linear regression. In addition, thorough experiments with publicly available data demonstrate that our algorithms outperform other known algorithms.