Skip to yearly menu bar Skip to main content


( events)   Timezone:  
Spotlight
Wed Dec 06 11:45 AM -- 11:50 AM (PST) @ Hall C
Approximation and Convergence Properties of Generative Adversarial Learning
Shuang Liu · Olivier Bousquet · Kamalika Chaudhuri

Generative adversarial networks (GAN) approximate a target data distribution by jointly optimizing an objective function through a "two-player game" between a generator and a discriminator. Despite their empirical success, however, two very basic questions on how well they can approximate the target distribution remain unanswered. First, it is not known how restricting the discriminator family affects the approximation quality. Second, while a number of different objective functions have been proposed, we do not understand when convergence to the global minima of the objective function leads to convergence to the target distribution under various notions of distributional convergence. In this paper, we address these questions in a broad and unified setting by defining a notion of adversarial divergences that includes a number of recently proposed objective functions. We show that if the objective function is an adversarial divergence with some additional conditions, then using a restricted discriminator family has a moment-matching effect. Additionally, we show that for objective functions that are strict adversarial divergences, convergence in the objective function implies weak convergence, thus generalizing previous results.