Skip to yearly menu bar Skip to main content


( events)   Timezone:  
Oral
Tue Dec 05 04:50 PM -- 05:05 PM (PST) @ Hall A
Eigen-Distortions of Hierarchical Representations
Alexander Berardino · Valero Laparra · Johannes BallĂ© · Eero Simoncelli

We develop a method for comparing hierarchical image representations in terms of their ability to explain perceptual sensitivity in humans. Specifically, we utilize Fisher information to establish a model-derived prediction of local sensitivity to perturbations around a given natural image. For a given image, we compute the eigenvectors of the Fisher information matrix with largest and smallest eigenvalues, corresponding to the model-predicted most- and least-noticeable image distortions, respectively. For human subjects, we then measure the amount of each distortion that can be reliably detected when added to the image, and compare these thresholds to the predictions of the corresponding model. We use this method to test the ability of a variety of representations to mimic human perceptual sensitivity. We find that the early layers of VGG16, a deep neural network optimized for object recognition, provide a better match to human perception than later layers, and a better match than a 4-stage convolutional neural network (CNN) trained on a database of human ratings of distorted image quality. On the other hand, we find that simple models of early visual processing, incorporating one or more stages of local gain control, trained on the same database of distortion ratings, predict human sensitivity significantly better than both the CNN and all layers of VGG16.