Military AI Needs Technically-Informed Regulation to Safeguard AI Research and its Applications
Abstract
Military weapon systems and command-and-control infrastructure augmented by artificial intelligence (AI) have seen rapid development and deployment in recent years. However, the sociotechnical impacts of AI on combat systems, military decision-making, and the norms of warfare have been understudied. We focus on a specific subset of lethal autonomous weapon systems (LAWS) that use AI for targeting or battlefield decisions. We refer to this subset as AI-powered lethal autonomous weapon systems (AI-LAWS) and argue that they introduce novel risks—including unanticipated escalation, poor reliability in unfamiliar environments, and erosion of human oversight—all of which threaten both military effectiveness and the openness of AI research.These risks cannot be addressed by high-level policy alone; effective regulation must be grounded in the technical behavior of AI models. We argue that AI researchers must be involved throughout the regulatory lifecycle.Thus, we propose a clear, behavior-based definition of AI-LAWS—systems that introduce unique risks through their use of modern AI—as a foundation for technically grounded regulation, given that existing frameworks do not distinguish them from conventional LAWS.Using this definition, we propose several technically-informed policy directions and invite greater participation from the AI research community in military AI policy discussions.