San Diego Oral Session
Oral 5C Generation/Simulation 3
Upper Level Ballroom 20AB
Moderators: Thomas Kipf · Zhiwen Fan
InfinityStar: Uniļ¬ed Spacetime AutoRegressive Modeling for Visual Generation
Jinlai Liu · Jian Han · Bin Yan · Hui Wu · Fengda Zhu · Xing Wang · Yi Jiang · BINGYUE PENG · Zehuan Yuan
We introduce InfinityStar, a unified spacetime autoregressive framework for high-resolution image and dynamic video synthesis. Building on the recent success of autoregressive modeling in both vision and language, our purely discrete approach jointly captures spatial and temporal dependencies within a single architecture. This unified design naturally supports a variety of generation tasks such as text-to-image, text-to-video, image-to-video, and long-duration video synthesis via straightforward temporal autoregression. Through extensive experiments, InfinityStar scores 83.74 on VBench, outperforming all autoregressive models by large margins, even surpassing diffusion competitors like HunyuanVideo. Without extra optimizations, our model generates a 5s, 720p video approximately 10$\times$ faster than leading diffusion-based methods. To our knowledge, InfinityStar is the first discrete autoregressive video generator capable of producing industrial-level 720p videos. We release all code and models to foster further research in efficient, high-quality video generation.
PlayerOne: Egocentric World Simulator
Yuanpeng Tu · Hao Luo · Xi Chen · Xiang Bai · Fan Wang · Hengshuang Zhao
We introduce PlayerOne, the first egocentric realistic world simulator, facilitating immersive and unrestricted exploration within vividly dynamic environments. Given an egocentric scene image from the user, PlayerOne can accurately construct the corresponding world and generate egocentric videos that are strictly aligned with the real-scene human motion of the user captured by an exocentric camera. PlayerOne is trained in a coarse-to-fine pipeline that first performs pretraining on large-scale egocentric text-video pairs for coarse-level egocentric understanding, followed by finetuning on synchronous motion-video data extracted from egocentric-exocentric video datasets with our automatic construction pipeline. Besides, considering the varying importance of different components, we design a part-disentangled motion injection scheme, enabling precise control of part-level movements. In addition, we devise a joint reconstruction framework that progressively models both the 4D scene and video frames, ensuring scene consistency in the long-form video generation. Experimental results demonstrate its great generalization ability in precise control of varying human movements and world-consistent modeling of diverse scenarios. It marks the first endeavor into egocentric real-world simulation and can pave the way for the community to delve into fresh frontiers of world modeling and its diverse applications.
BEDLAM2.0: Synthetic humans and cameras in motion
Joachim Tesch · Giorgio Becherini · Prerana Achar · Anastasios Yiannakidis · Muhammed Kocabas · Priyanka Patel · Michael Black
Inferring 3D human motion from video remains a challenging problem with many applications. While traditional methods estimate the human in image coordinates, many applications require human motion to be estimated in world coordinates. This is particularly challenging when there is both human and camera motion. Progress on this topic has been limited by the lack of rich video data with ground truth human and camera movement. We address this with BEDLAM2.0, a new dataset that goes beyond the popular BEDLAM dataset in important ways. In addition to introducing more diverse and realistic cameras and camera motions, BEDLAM2.0 increases diversity and realism of body shape, motions, clothing, hair, and 3D environments. Additionally, it adds shoes, which were missing in BEDLAM. BEDLAM has become a key resource for training 3D human pose and motion regressors today and we show that BEDLAM2.0 is significantly better, particularly for training methods that estimate humans in world coordinates. We compare state-of-the art methods trained on BEDLAM and BEDLAM2.0, and find that BEDLAM2.0 significantly improves accuracy over BEDLAM. For research purposes, we provide the rendered videos, ground truth body parameters, and camera motions. We also provide the 3D assets to which we have rights and links to those from third parties.