San Diego Oral Session
Oral 5E Neuroscience
Upper Level Ballroom 20D
Moderators: Mengmi Zhang · Wen-Hao Zhang
High-dimensional neuronal activity from low-dimensional latent dynamics: a solvable model
Valentin Schmutz · Ali Haydaroğlu · Shuqi Wang · Yixiao Feng · Matteo Carandini · Kenneth D Harris
Computation in recurrent networks of neurons has been hypothesized to occur at the level of low-dimensional latent dynamics, both in artificial systems and in the brain. This hypothesis seems at odds with evidence from large-scale neuronal recordings in mice showing that neuronal population activity is high-dimensional. To demonstrate that low-dimensional latent dynamics and high-dimensional activity can be two sides of the same coin, we present an analytically solvable recurrent neural network (RNN) model whose dynamics can be exactly reduced to a low-dimensional dynamical system, but generates an activity manifold that has a high linear embedding dimension. This raises the question: Do low-dimensional latents explain the high-dimensional activity observed in mouse visual cortex? Spectral theory tells us that the covariance eigenspectrum alone does not allow us to recover the dimensionality of the latents, which can be low or high, when neurons are nonlinear. To address this indeterminacy, we develop Neural Cross-Encoder (NCE), an interpretable, nonlinear latent variable modeling method for neuronal recordings, and find that high-dimensional neuronal responses to drifting gratings and spontaneous activity in visual cortex can be reduced to low-dimensional latents, while the responses to natural images cannot. We conclude that the high-dimensional activity measured in certain conditions, such as in the absence of a stimulus, is explained by low-dimensional latents that are nonlinearly processed by individual neurons.
Task-Optimized Convolutional Recurrent Networks Align with Tactile Processing in the Rodent Brain
Trinity Chung · Yuchen Shen · Nathan Kong · Aran Nayebi
Tactile sensing remains far less understood in neuroscience and less effective in artificial systems compared to more mature modalities such as vision and language. We bridge these gaps by introducing a novel Encoder-Attender-Decoder (EAD) framework to systematically explore the space of task-optimized temporal neural networks trained on realistic tactile input sequences from a customized rodent whisker-array simulator. We identify convolutional recurrent neural networks (ConvRNNs) as superior encoders to purely feedforward and state-space architectures for tactile categorization. Crucially, these ConvRNN-encoder-based EAD models achieve neural representations closely matching rodent somatosensory cortex, saturating the explainable neural variability and revealing a clear linear relationship between supervised categorization performance and neural alignment. Furthermore, contrastive self-supervised ConvRNN-encoder-based EADs, trained with tactile-specific augmentations, match supervised neural fits, serving as an ethologically-relevant, label-free proxy. For neuroscience, our findings highlight nonlinear recurrent processing as important for general-purpose tactile representations in somatosensory cortex, providing the first quantitative characterization of the underlying inductive biases in this system. For embodied AI, our results emphasize the importance of recurrent EAD architectures to handle realistic tactile inputs, along with tailored self-supervised learning methods for achieving robust tactile perception with the same type of sensors animals use to sense in unstructured environments.
Memory Mosaics, networks of associative memories, have demonstrated appealing compositional and in-context learning capabilities on medium-scale networks (GPT-2 scale) and synthetic small datasets. This work shows that these favorable properties remain when we scale memory mosaics to large language model sizes (llama-8B scale) and real-world datasets. To this end, we scale memory mosaics to 10B size, we train them on one trillion tokens, we introduce a couple architectural modifications (memory mosaics v2), we assess their capabilities across three evaluation dimensions: training-knowledge storage, new-knowledge storage, and in-context learning. Throughout the evaluation, memory mosaics v2 match transformers on the learning of training knowledge (first dimension) and significantly outperforms transformers on carrying out new tasks at inference time (second and third dimensions). These improvements cannot be easily replicated by simply increasing the training data for transformers. A memory mosaics v2 trained on one trillion tokens still perform better on these tasks than a transformer trained on eight trillion tokens.