Skip to yearly menu bar Skip to main content


Oral Session

Oral 4A Optimization

Hall C2 (level 1 gate 9 south of food court)
Wed 13 Dec 1:30 p.m. PST — 2:30 p.m. PST

Abstract:

Wed 13 Dec. 13:30 - 13:45 PST

A Single-Loop Accelerated Extra-Gradient Difference Algorithm with Improved Complexity Bounds for Constrained Minimax Optimization

Yuanyuan Liu · Fanhua Shang · Weixin An · Junhao Liu · Hongying Liu · Zhouchen Lin

In this paper, we propose a novel extra-gradient difference acceleration algorithm for solving constrained nonconvex-nonconcave (NC-NC) minimax problems. In particular, we design a new extra-gradient difference step to obtain an important quasi-cocoercivity property, which plays a key role to significantly improve the convergence rate in the constrained NC-NC setting without additional structural assumption. Then momentum acceleration is also introduced into our dual accelerating update step. Moreover, we prove that, to find an $\epsilon$-stationary point of the function $f$, our algorithm attains the complexity $\mathcal{O}(\epsilon^{-2})$ in the constrained NC-NC setting, while the best-known complexity bound is $\widetilde{\mathcal{O}}(\epsilon^{-4})$, where $\widetilde{\mathcal{O}}(\cdot)$ hides logarithmic factors compared to $\mathcal{O}(\cdot)$. As the special cases of the constrained NC-NC setting, our algorithm can also obtain the same complexity $\mathcal{O}(\epsilon^{-2})$ for both the nonconvex-concave (NC-C) and convex-nonconcave (C-NC) cases, while the best-known complexity bounds are $\widetilde{\mathcal{O}}(\epsilon^{-2.5})$ for the NC-C case and $\widetilde{\mathcal{O}}(\epsilon^{-4})$ for the C-NC case. For fair comparison with existing algorithms, we also analyze the complexity bound to find $\epsilon$-stationary point of the primal function $\phi$ for the constrained NC-C problem, which shows that our algorithm can improve the complexity bound from $\widetilde{\mathcal{O}}(\epsilon^{-3})$ to $\mathcal{O}(\epsilon^{-2})$. To the best of our knowledge, this is the first time that the proposed algorithm improves the best-known complexity bounds from $\mathcal{O}(\epsilon^{-4})$ and $\widetilde{\mathcal{O}}(\epsilon^{-3})$ to $\mathcal{O}(\epsilon^{-2})$ in both the NC-NC and NC-C settings.

Wed 13 Dec. 13:45 - 14:00 PST

Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models

Alex Damian · Eshaan Nichani · Rong Ge · Jason Lee

We focus on the task of learning a single index model $\sigma(w^\star \cdot x)$ with respect to the isotropic Gaussian distribution in $d$ dimensions. Prior work has shown that the sample complexity of learning $w^\star$ is governed by the information exponent $k^\star$ of the link function $\sigma$, which is defined as the index of the first nonzero Hermite coefficient of $\sigma$. Ben Arous et al. (2021) showed that $n \gtrsim d^{k^\star-1}$ samples suffice for learning $w^\star$ and that this is tight for online SGD. However, the CSQ lower bound for gradient based methods only shows that $n \gtrsim d^{k^\star/2}$ samples are necessary. In this work, we close the gap between the upper and lower bounds by showing that online SGD on a smoothed loss learns $w^\star$ with $n \gtrsim d^{k^\star/2}$ samples. We also draw connections to statistical analyses of tensor PCA and to the implicit regularization effects of minibatch SGD on empirical losses.

Wed 13 Dec. 14:00 - 14:15 PST

Generalizing Nonlinear ICA Beyond Structural Sparsity

Yujia Zheng · Kun Zhang

Nonlinear independent component analysis (ICA) aims to uncover the true latent sources from their observable nonlinear mixtures. Despite its significance, the identifiability of nonlinear ICA is known to be impossible without additional assumptions. Recent advances have proposed conditions on the connective structure from sources to observed variables, known as Structural Sparsity, to achieve identifiability in an unsupervised manner. However, the sparsity constraint may not hold universally for all sources in practice. Furthermore, the assumptions of bijectivity of the mixing process and independence among all sources, which arise from the setting of ICA, may also be violated in many real-world scenarios. To address these limitations and generalize nonlinear ICA, we propose a set of new identifiability results in the general settings of undercompleteness, partial sparsity and source dependence, and flexible grouping structures. Specifically, we prove identifiability when there are more observed variables than sources (undercomplete), and when certain sparsity and/or source independence assumptions are not met for some changing sources. Moreover, we show that even in cases with flexible grouping structures (e.g., part of the sources can be divided into irreducible independent groups with various sizes), appropriate identifiability results can also be established. Theoretical claims are supported empirically on both synthetic and real-world datasets.

Wed 13 Dec. 14:15 - 14:30 PST

Fine-Tuning Language Models with Just Forward Passes

Sadhika Malladi · Tianyu Gao · Eshaan Nichani · Alex Damian · Jason Lee · Danqi Chen · Sanjeev Arora

Fine-tuning language models (LMs) has yielded success on diverse downstream tasks, but as LMs grow in size, backpropagation requires a prohibitively large amount of memory. Zeroth-order (ZO) methods can in principle estimate gradients using only two forward passes but are theorized to be catastrophically slow for optimizing large models. In this work, we propose a memory-efficient zerothorder optimizer (MeZO), adapting the classical ZO-SGD method to operate in-place, thereby fine-tuning LMs with the same memory footprint as inference. For example, with a single A100 80GB GPU, MeZO can train a 30-billion parameter model, whereas fine-tuning with backpropagation can train only a 2.7B LM with the same budget. We conduct comprehensive experiments across model types (masked and autoregressive LMs), model scales (up to 66B), and downstream tasks (classification, multiple-choice, and generation). Our results demonstrate that (1) MeZO significantly outperforms in-context learning and linear probing; (2) MeZO achieves comparable performance to fine-tuning with backpropagation across multiple tasks, with up to 12× memory reduction and up to 2× GPU-hour reduction in our implementation; (3) MeZO is compatible with both full-parameter and parameter-efficient tuning techniques such as LoRA and prefix tuning; (4) MeZO can effectively optimize non-differentiable objectives (e.g., maximizing accuracy or F1). We support our empirical findings with theoretical insights, highlighting how adequate pre-training and task prompts enable MeZO to fine-tune huge models, despite classical ZO analyses suggesting otherwise.