Oral Session
Oral 2D Privacy
Nearly Tight Bounds For Differentially Private Multiway Cut
Mina Dalirrooyfard · Slobodan Mitrovic · Yuriy Nevmyvaka
Finding min
Privacy Auditing with One (1) Training Run
Thomas Steinke · Milad Nasr · Matthew Jagielski
We propose a scheme for auditing differentially private machine learning systems with a single training run. This exploits the parallelism of being able to add or remove multiple training examples independently. We analyze this using the connection between differential privacy and statistical generalization, which avoids the cost of group privacy. Our auditing scheme requires minimal assumptions about the algorithm and can be applied in the black-box or white-box setting. We demonstrate the effectiveness of our framework by applying it to DP-SGD, where we can achieve meaningful empirical privacy lower bounds by training only one model. In contrast, standard methods would require training hundreds of models.
Private Everlasting Prediction
Moni Naor · Kobbi Nissim · Uri Stemmer · Chao Yan
A private learner is trained on a sample of labeled points and generates a hypothesis that can be used for predicting the labels of newly sampled points while protecting the privacy of the training set [Kasiviswannathan et al., FOCS 2008]. Past research uncovered that private learners may need to exhibit significantly higher sample complexity than non-private learners as is the case of learning of one-dimensional threshold functions [Bun et al., FOCS 2015, Alon et al., STOC 2019].We explore prediction as an alternative to learning. A predictor answers a stream of classification queries instead of outputting a hypothesis. Earlier work has considered a private prediction model with a single classification query [Dwork and Feldman, COLT 2018]. We observe that when answering a stream of queries, a predictor must modify the hypothesis it uses over time, and in a manner that cannot rely solely on the training set.We introduce {\em private everlasting prediction} taking into account the privacy of both the training set {\em and} the (adaptively chosen) queries made to the predictor. We then present a generic construction of private everlasting predictors in the PAC model.The sample complexity of the initial training sample in our construction is quadratic (up to polylog factors) in the VC dimension of the concept class. Our construction allows prediction for all concept classes with finite VC dimension, and in particular threshold functions over infinite domains, for which (traditional) private learning is known to be impossible.
User-Level Differential Privacy With Few Examples Per User
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi · Raghu Meka · Chiyuan Zhang
Previous work on user-level differential privacy (DP) [Ghazi et al. NeurIPS 2021, Bun et al. STOC 2023] obtained generic algorithms that work for various learning tasks. However, their focus was on the *example-rich* regime, where the users have so many examples that each user could themselves solve the problem. In this work we consider the *example-scarce* regime, where each user has only a few examples, and obtain the following results:* For approximate-DP, we give a generic transformation of any item-level DP algorithm to a user-level DP algorithm. Roughly speaking, the latter gives a (multiplicative) savings of