Poster
|
Thu 8:45
|
D-CIPHER: Discovery of Closed-form Partial Differential Equations
Krzysztof Kacprzyk · Zhaozhi Qian · Mihaela van der Schaar
|
|
Workshop
|
|
Attention-guided neural differential equations for physics-constrained deep learning of ion transport
Danyal Rehman · John Lienhard
|
|
Workshop
|
|
Two-Step Bayesian PINNs for Uncertainty Estimation
Pablo Flores · Olga Graf · Pavlos Protopapas · Karim Pichara
|
|
Workshop
|
Sat 6:30
|
The Symbiosis of Deep Learning and Differential Equations -- III
Luca Herranz-Celotti · Martin Magill · Ermal Rrapaj · Winnie Xu · Qiyao Wei · Archis Joglekar · Michael Poli · Animashree Anandkumar
|
|
Workshop
|
|
Semi-Implicit Neural Ordinary Differential Equations for Learning Chaotic Systems
Hong Zhang · Ying Liu · Romit Maulik
|
|
Workshop
|
Sat 9:45
|
Can Physics informed Neural Operators self improve?
Ritam Majumdar · Amey Varhade · Shirish Karande · Lovekesh Vig
|
|
Workshop
|
|
Physics-Informed Transformer Networks
Fabricio Dos Santos · Tara Akhound-Sadegh · Siamak Ravanbakhsh
|
|
Workshop
|
|
Generalized One-Shot Transfer Learning of Linear Ordinary and Partial Differential Equations
Pavlos Protopapas · Hari Raval
|
|
Poster
|
Wed 15:00
|
Self-Supervised Learning with Lie Symmetries for Partial Differential Equations
Grégoire Mialon · Quentin Garrido · Hannah Lawrence · Danyal Rehman · Yann LeCun · Bobak Kiani · Bobak Kiani
|
|
Workshop
|
|
Towards stable real-world equation discovery with assessing differentiating quality influence
Mikhail Masliaev · Ilya Markov · Ilya Markov · Alexander Hvatov · Alexander Hvatov
|
|
Workshop
|
|
Generalised Hyperbolic State-space Models for Inference in Dynamic Systems
Yaman Kindap · Simon Godsill
|
|
Poster
|
Tue 15:15
|
Exploring the Optimal Choice for Generative Processes in Diffusion Models: Ordinary vs Stochastic Differential Equations
Yu Cao · Jingrun Chen · Yixin Luo · Xiang ZHOU
|
|