Workshop
|
|
Data-Driven Neural-ODE Modeling for Breast Cancer Tumor Dynamics and Progression-Free Survival Predictions
Jinlin Xiang · Bozhao Qi · Qi Tang · Marc Cerou · Wei Zhao
|
|
Workshop
|
|
Multimodal base distributions for continuous-time normalising flows
Shane Josias · Willie Brink
|
|
Poster
|
Thu 8:45
|
Generalization bounds for neural ordinary differential equations and deep residual networks
Pierre Marion · Pierre Marion
|
|
Workshop
|
|
Semi-Implicit Neural Ordinary Differential Equations for Learning Chaotic Systems
Hong Zhang · Ying Liu · Romit Maulik
|
|
Workshop
|
|
Unifying Neural Controlled Differential Equations and Neural Flow for Irregular Time Series Classification
YongKyung Oh · Dongyoung Lim · SUNGIL KIM
|
|
Workshop
|
|
Generalized One-Shot Transfer Learning of Linear Ordinary and Partial Differential Equations
Pavlos Protopapas · Hari Raval
|
|
Workshop
|
|
Attention-guided neural differential equations for physics-constrained deep learning of ion transport
Danyal Rehman · John Lienhard
|
|
Workshop
|
|
Two-Step Bayesian PINNs for Uncertainty Estimation
Pablo Flores · Olga Graf · Pavlos Protopapas · Karim Pichara
|
|
Workshop
|
|
Physics-Informed Transformer Networks
Fabricio Dos Santos · Tara Akhound-Sadegh · Siamak Ravanbakhsh
|
|
Workshop
|
Sat 9:45
|
Can Physics informed Neural Operators self improve?
Ritam Majumdar · Amey Varhade · Shirish Karande · Lovekesh Vig
|
|
Workshop
|
Sat 6:30
|
The Symbiosis of Deep Learning and Differential Equations -- III
Luca Herranz-Celotti · Martin Magill · Ermal Rrapaj · Winnie Xu · Qiyao Wei · Archis Joglekar · Michael Poli · Animashree Anandkumar
|
|
Poster
|
Tue 15:15
|
Exploring the Optimal Choice for Generative Processes in Diffusion Models: Ordinary vs Stochastic Differential Equations
Yu Cao · Jingrun Chen · Yixin Luo · Xiang ZHOU
|
|