Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

190 Results

<<   <   Page 1 of 16   >   >>
Workshop
Physics-guided Training of Neural Electromagnetic Wave Simulators with Time-reversal Consistency
Charles Dove · Jatearoon Boondicharern · Laura Waller
Workshop
Physics-informed DeepONet for battery state prediction
Keyan Guo
Workshop
Incremental learning for physics-informed neural networks
Aleksandr Dekhovich · Marcel Sluiter · David M.J. Tax · Miguel Bessa
Poster
Wed 15:00 Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural Networks
Woojin Cho · Kookjin Lee · Donsub Rim · Noseong Park
Workshop
PINNs-TF2: Fast and User-Friendly Physics-Informed Neural Networks in TensorFlow V2
Reza Akbarian Bafghi · Maziar Raissi
Workshop
Generalized One-Shot Transfer Learning of Linear Ordinary and Partial Differential Equations
Pavlos Protopapas · Hari Raval
Poster
Wed 8:45 PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification
Qianli Shen · Wai Hoh Tang · Zhun Deng · Apostolos Psaros · Kenji Kawaguchi
Workshop
A Physics-Informed Variational Autoencoder for Rapid Galaxy Inference and Anomaly Detection
Alex Gagliano · Ashley Villar
Poster
Wed 15:00 Lie Point Symmetry and Physics-Informed Networks
Tara Akhound-Sadegh · Laurence Perreault-Levasseur · Johannes Brandstetter · Max Welling · Siamak Ravanbakhsh
Poster
Wed 15:00 Separable Physics-Informed Neural Networks
Junwoo Cho · Seungtae Nam · Hyunmo Yang · Seok-Bae Yun · Youngjoon Hong · Eunbyung Park
Workshop
Gradient weighted physics-informed neural networks for capturing shocks in porous media flows
Somiya Kapoor · Abhishek Chandra · Taniya Kapoor · Mitrofan Curti
Workshop
ELUQuant: Event-Level Uncertainty Quantification using Physics-Informed Bayesian Neural Networks with Flow approximated Posteriors - A DIS Study
Cristiano Fanelli · James Giroux