Poster
|
Wed 8:45
|
Label Robust and Differentially Private Linear Regression: Computational and Statistical Efficiency
Xiyang Liu · Prateek Jain · Weihao Kong · Sewoong Oh · Arun Suggala
|
|
Workshop
|
|
Enhancing Instance-Level Image Classification with Set-Level Labels
Renyu Zhang · Aly Khan · Yuxin Chen · Robert Grossman
|
|
Affinity Workshop
|
Mon 13:30
|
Deep Learning from Crowdsourced Labels with Identifiability Guarantees
Shahana Ibrahim · Tri Nguyen · Xiao Fu
|
|
Workshop
|
|
(Un)certainty selection methods for Active Learning on Label Distributions
James Spann · Christopher Homan
|
|
Workshop
|
|
Channel Selection for Test-Time Adaptation Under Distribution Shift
Pedro Vianna · Muawiz Chaudhary · An Tang · Guy Cloutier · Guy Wolf · Michael Eickenberg · Eugene Belilovsky
|
|
Workshop
|
|
On the Synergy Between Label Noise and Learning Rate Annealing in Neural Network Training
Stanley Wei · Tongzheng Ren · Simon Du
|
|
Workshop
|
|
Preparation Of Labeled Cryo-ET Datasets For Training And Evaluation Of Machine Learning Models
Aygul Ishemgulova · Alex J. Noble · Tristan Bepler · Alex De Marco
|
|
Workshop
|
|
Bandit-Driven Batch Selection for Robust Learning under Label Noise
Michal Lisicki · Mihai Nica · Graham Taylor
|
|
Workshop
|
|
Bandit-Driven Batch Selection for Robust Learning under Label Noise
Michal Lisicki · Graham Taylor · Mihai Nica
|
|
Workshop
|
|
An Active Learning Framework for ML-Assisted Labeling of Cryo-EM Micrographs
Robert Kiewisz · Tristan Bepler
|
|
Poster
|
Thu 15:00
|
AQuA: A Benchmarking Tool for Label Quality Assessment
Mononito Goswami · Vedant Sanil · Arjun Choudhry · Arvind Srinivasan · Chalisa Udompanyawit · Artur Dubrawski
|
|
Poster
|
Thu 8:45
|
Neural Relation Graph: A Unified Framework for Identifying Label Noise and Outlier Data
Jang-Hyun Kim · Sangdoo Yun · Hyun Oh Song
|
|