Skip to yearly menu bar Skip to main content


Gigastep - One Billion Steps per Second Multi-agent Reinforcement Learning

Mathias Lechner · lianhao yin · Tim Seyde · Tsun-Hsuan Johnson Wang · Wei Xiao · Ramin Hasani · Joshua Rountree · Daniela Rus

Great Hall & Hall B1+B2 (level 1) #1511
[ ]
[ Paper [ Poster [ OpenReview
Thu 14 Dec 3 p.m. PST — 5 p.m. PST


Multi-agent reinforcement learning (MARL) research is faced with a trade-off: it either uses complex environments requiring large compute resources, which makes it inaccessible to researchers with limited resources, or relies on simpler dynamics for faster execution, which makes the transferability of the results to more realistic tasks challenging. Motivated by these challenges, we present Gigastep, a fully vectorizable, MARL environment implemented in JAX, capable of executing up to one billion environment steps per second on consumer-grade hardware. Its design allows for comprehensive MARL experimentation, including a complex, high-dimensional space defined by 3D dynamics, stochasticity, and partial observations. Gigastep supports both collaborative and adversarial tasks, continuous and discrete action spaces, and provides RGB image and feature vector observations, allowing the evaluation of a wide range of MARL algorithms. We validate Gigastep's usability through an extensive set of experiments, underscoring its role in widening participation and promoting inclusivity in the MARL research community.

Chat is not available.