Skip to yearly menu bar Skip to main content


PIXIU: A Comprehensive Benchmark, Instruction Dataset and Large Language Model for Finance

Qianqian Xie · Weiguang Han · Xiao Zhang · Yanzhao Lai · Min Peng · Alejandro Lopez-Lira · Jimin Huang

Great Hall & Hall B1+B2 (level 1) #100
[ ] [ Project Page ]
[ Paper [ Poster [ OpenReview
Tue 12 Dec 8:45 a.m. PST — 10:45 a.m. PST


Although large language models (LLMs) have shown great performance in natural language processing (NLP) in the financial domain, there are no publicly available financially tailored LLMs, instruction tuning datasets, and evaluation benchmarks, which is critical for continually pushing forward the open-source development of financial artificial intelligence (AI). This paper introduces PIXIU, a comprehensive framework including the first financial LLM based on fine-tuning LLaMA with instruction data, the first instruction data with 128K data samples to support the fine-tuning, and an evaluation benchmark with 8 tasks and 15 datasets. We first construct the large-scale multi-task instruction data considering a variety of financial tasks, financial document types, and financial data modalities. We then propose a financial LLM called FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks. To support the evaluation of financial LLMs, we propose a standardized benchmark that covers a set of critical financial tasks, including six financial NLP tasks and two financial prediction tasks. With this benchmark, we conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks. The model, datasets, benchmark, and experimental results are open-sourced to facilitate future research in financial AI.

Chat is not available.