Skip to yearly menu bar Skip to main content


Described Object Detection: Liberating Object Detection with Flexible Expressions

Chi Xie · Zhao Zhang · Yixuan Wu · Feng Zhu · Rui Zhao · Shuang Liang

Great Hall & Hall B1+B2 (level 1) #318
[ ] [ Project Page ]
[ Paper [ Poster [ OpenReview
Thu 14 Dec 3 p.m. PST — 5 p.m. PST

Abstract: Detecting objects based on language information is a popular task that includes Open-Vocabulary object Detection (OVD) and Referring Expression Comprehension (REC). In this paper, we advance them to a more practical setting called *Described Object Detection* (DOD) by expanding category names to flexible language expressions for OVD and overcoming the limitation of REC only grounding the pre-existing object. We establish the research foundation for DOD by constructing a *Description Detection Dataset* ($D^3$). This dataset features flexible language expressions, whether short category names or long descriptions, and annotating all described objects on all images without omission. By evaluating previous SOTA methods on $D^3$, we find some troublemakers that fail current REC, OVD, and bi-functional methods. REC methods struggle with confidence scores, rejecting negative instances, and multi-target scenarios, while OVD methods face constraints with long and complex descriptions. Recent bi-functional methods also do not work well on DOD due to their separated training procedures and inference strategies for REC and OVD tasks. Building upon the aforementioned findings, we propose a baseline that largely improves REC methods by reconstructing the training data and introducing a binary classification sub-task, outperforming existing methods. Data and code are available at and related works are tracked in

Chat is not available.