Skip to yearly menu bar Skip to main content


Online Performative Gradient Descent for Learning Nash Equilibria in Decision-Dependent Games

Zihan Zhu · Ethan Fang · Zhuoran Yang

Great Hall & Hall B1+B2 (level 1) #1103
[ ]
[ Paper [ Poster [ OpenReview
Wed 13 Dec 8:45 a.m. PST — 10:45 a.m. PST


We study the multi-agent game within the innovative framework of decision-dependent games, which establishes a feedback mechanism that population data reacts to agents’ actions and further characterizes the strategic interactions between agents. We focus on finding the Nash equilibrium of decision-dependent games in the bandit feedback setting. However, since agents are strategically coupled, traditional gradient-based methods are infeasible without the gradient oracle. To overcome this challenge, we model the strategic interactions by a general parametric model and propose a novel online algorithm, Online Performative Gradient Descent (OPGD), which leverages the ideas of online stochastic approximation and projected gradient descent to learn the Nash equilibrium in the context of function approximation for the unknown gradient. In particular, under mild assumptions on the function classes defined in the parametric model, we prove that OPGD can find the Nash equilibrium efficiently for strongly monotone decision-dependent games. Synthetic numerical experiments validate our theory.

Chat is not available.