Skip to yearly menu bar Skip to main content


Residual Q-Learning: Offline and Online Policy Customization without Value

Chenran Li · Chen Tang · Haruki Nishimura · Jean Mercat · Masayoshi TOMIZUKA · Wei Zhan

Great Hall & Hall B1+B2 (level 1) #1224
[ ] [ Project Page ]
[ Paper [ Poster [ OpenReview
Wed 13 Dec 8:45 a.m. PST — 10:45 a.m. PST


Imitation Learning (IL) is a widely used framework for learning imitative behavior from demonstrations. It is especially appealing for solving complex real-world tasks where handcrafting reward function is difficult, or when the goal is to mimic human expert behavior. However, the learned imitative policy can only follow the behavior in the demonstration. When applying the imitative policy, we may need to customize the policy behavior to meet different requirements coming from diverse downstream tasks. Meanwhile, we still want the customized policy to maintain its imitative nature. To this end, we formulate a new problem setting called policy customization. It defines the learning task as training a policy that inherits the characteristics of the prior policy while satisfying some additional requirements imposed by a target downstream task. We propose a novel and principled approach to interpret and determine the trade-off between the two task objectives. Specifically, we formulate the customization problem as a Markov Decision Process (MDP) with a reward function that combines 1) the inherent reward of the demonstration; and 2) the add-on reward specified by the downstream task. We propose a novel framework, Residual Q-learning, which can solve the formulated MDP by leveraging the prior policy without knowing the inherent reward or value function of the prior policy. We derive a family of residual Q-learning algorithms that can realize offline and online policy customization, and show that the proposed algorithms can effectively accomplish policy customization tasks in various environments. Demo videos and code are available on our website:

Chat is not available.