Skip to yearly menu bar Skip to main content


The Gain from Ordering in Online Learning

Vasilis Kontonis · Mingchen Ma · Christos Tzamos

Great Hall & Hall B1+B2 (level 1) #1803
[ ]
Wed 13 Dec 8:45 a.m. PST — 10:45 a.m. PST

Abstract: We study fixed-design online learning where the learner is allowed to choose the order of the datapoints in order to minimize their regret (aka self-directed online learning). We focus on the fundamental task of online linear regression: the learner is given a dataset $X$ with $n$ examples in $d$ dimensions and at step $t$ they select a point $x_t \in X$, predict a value $\widetilde y_t$, and suffer loss $(\widetilde y_t - w^\ast \cdot x_t)^2$. The goal is to design algorithms that order the examples and achieve better regret than random- or worst-order online algorithms.For an arbitrary dataset $X$, we show that, under the Exponential Time Hypothesis, no efficient algorithm can approximate the optimal (best-order) regret within a factor of $d^{1/\poly(\log \log d)}$.We then show that, for structured datasets, we can bypass the above hardness result and achieve nearly optimal regret. When the examples of $X$ are drawn i.i.d.\ from the uniform distribution on the sphere, we present an algorithm based on the greedy heuristic of selecting ``easiest'' examples first that achieves a $\log d$-approximation of the optimal regret.

Chat is not available.