Skip to yearly menu bar Skip to main content


DiViNeT: 3D Reconstruction from Disparate Views using Neural Template Regularization

Aditya Vora · Akshay Gadi Patil · Hao Zhang

Great Hall & Hall B1+B2 (level 1) #125
[ ] [ Project Page ]
[ Paper [ Poster [ OpenReview
Wed 13 Dec 3 p.m. PST — 5 p.m. PST


We present a volume rendering-based neural surface reconstruction method that takes as few as three disparate RGB images as input. Our key idea is to regularize the reconstruction, which is severely ill-posed and leaving significant gaps between the sparse views, by learning a set of neural templates that act as surface priors. Our method, coined DiViNet, operates in two stages. The first stage learns the templates, in the form of 3D Gaussian functions, across different scenes, without 3D supervision. In the reconstruction stage, our predicted templates serve as anchors to help “stitch” the surfaces over sparse regions. We demonstrate that our approach is not only able to complete the surface geometry but also reconstructs surface details to a reasonable extent from few disparate input views. On the DTU and BlendedMVS datasets, our approach achieves the best reconstruction quality among existing methods in the presence of such sparse views and performs on par, if not better, with competing methods when dense views are employed as inputs.

Chat is not available.