Skip to yearly menu bar Skip to main content


Oral

Adaptive Online Gradient Descent

Peter Bartlett · Elad Hazan · Sasha Rakhlin


Abstract: We study the rates of growth of the regret in online convex optimization. First, we show that a simple extension of the algorithm of Hazan et al eliminates the need for a priori knowledge of the lower bound on the second derivatives of the observed functions. We then provide an algorithm, Adaptive Online Gradient Descent, which interpolates between the results of Zinkevich for linear functions and of Hazan et al for strongly convex functions, achieving intermediate rates between $\sqrt{T}$ and $\log T$. Furthermore, we show strong optimality of the algorithm. Finally, we provide an extension of our results to general norms.

Chat is not available.