Skip to yearly menu bar Skip to main content


Poster

Domain Re-Modulation for Few-Shot Generative Domain Adaptation

Yi Wu · Ziqiang Li · Chaoyue Wang · Heliang Zheng · Shanshan Zhao · Bin Li · Dacheng Tao

Great Hall & Hall B1+B2 (level 1) #600
[ ] [ Project Page ]
[ Paper [ Poster [ OpenReview
Thu 14 Dec 8:45 a.m. PST — 10:45 a.m. PST

Abstract: In this study, we delve into the task of few-shot Generative Domain Adaptation (GDA), which involves transferring a pre-trained generator from one domain to a new domain using only a few reference images. Inspired by the way human brains acquire knowledge in new domains, we present an innovative generator structure called $\textbf{Domain Re-Modulation (DoRM)}$. DoRM not only meets the criteria of $\textit{high quality}$, $\textit{large synthesis diversity}$, and $\textit{cross-domain consistency}$, which were achieved by previous research in GDA, but also incorporates $\textit{memory}$ and $\textit{domain association}$, akin to how human brains operate. Specifically, DoRM freezes the source generator and introduces new mapping and affine modules (M\&A modules) to capture the attributes of the target domain during GDA. This process resembles the formation of new synapses in human brains. Consequently, a linearly combinable domain shift occurs in the style space. By incorporating multiple new M\&A modules, the generator gains the capability to perform high-fidelity multi-domain and hybrid-domain generation. Moreover, to maintain cross-domain consistency more effectively, we introduce a similarity-based structure loss. This loss aligns the auto-correlation map of the target image with its corresponding auto-correlation map of the source image during training. Through extensive experiments, we demonstrate the superior performance of our DoRM and similarity-based structure loss in few-shot GDA, both quantitatively and qualitatively. Code will be available at https://github.com/wuyi2020/DoRM.

Chat is not available.