Skip to yearly menu bar Skip to main content

Spotlight Poster

Fast Optimal Transport through Sliced Generalized Wasserstein Geodesics

Guillaume Mahey · Laetitia Chapel · Gilles Gasso · ClĂ©ment Bonet · Nicolas Courty

Great Hall & Hall B1+B2 (level 1) #1023
[ ]
[ Paper [ Poster [ OpenReview
Thu 14 Dec 8:45 a.m. PST — 10:45 a.m. PST

Abstract: Wasserstein distance (WD) and the associated optimal transport plan have been proven useful in many applications where probability measures are at stake. In this paper, we propose a new proxy of the squared WD, coined $\textnormal{min-SWGG}$, that is based on the transport map induced by an optimal one-dimensional projection of the two input distributions. We draw connections between $\textnormal{min-SWGG}$, and Wasserstein generalized geodesics in which the pivot measure is supported on a line. We notably provide a new closed form for the exact Wasserstein distance in the particular case of one of the distributions supported on a line allowing us to derive a fast computational scheme that is amenable to gradient descent optimization. We show that $\textnormal{min-SWGG}$, is an upper bound of WD and that it has a complexity similar to as Sliced-Wasserstein, with the additional feature of providing an associated transport plan. We also investigate some theoretical properties such as metricity, weak convergence, computational and topological properties. Empirical evidences support the benefits of $\textnormal{min-SWGG}$, in various contexts, from gradient flows, shape matching and image colorization, among others.

Chat is not available.