Skip to yearly menu bar Skip to main content


RH-BrainFS: Regional Heterogeneous Multimodal Brain Networks Fusion Strategy

Hongting Ye · Yalu Zheng · Yueying Li · Ke Zhang · Youyong Kong · Yonggui Yuan


Multimodal fusion has become an important research technique in neuroscience that completes downstream tasks by extracting complementary information from multiple modalities. Existing multimodal research on brain networks mainly focuses on two modalities, structural connectivity (SC) and functional connectivity (FC). Recently, extensive literature has shown that the relationship between SC and FC is complex and not a simple one-to-one mapping. The coupling of structure and function at the regional level is heterogeneous. However, all previous studies have neglected the modal regional heterogeneity between SC and FC and fused their representations via "simple patterns", which are inefficient ways of multimodal fusion and affect the overall performance of the model. In this paper, to alleviate the issue of regional heterogeneity of multimodal brain networks, we propose a novel Regional Heterogeneous multimodal Brain networks Fusion Strategy (RH-BrainFS). Briefly, we introduce a brain subgraph networks module to extract regional characteristics of brain networks, and further use a new transformer-based fusion bottleneck module to alleviate the issue of regional heterogeneity between SC and FC. To the best of our knowledge, this is the first paper to explicitly state the issue of structural-functional modal regional heterogeneity and to propose asolution. Extensive experiments demonstrate that the proposed method outperforms several state-of-the-art methods in a variety of neuroscience tasks.

Chat is not available.