Skip to yearly menu bar Skip to main content


Poster

Cheap and Quick: Efficient Vision-Language Instruction Tuning for Large Language Models

Gen Luo · Yiyi Zhou · Tianhe Ren · Shengxin Chen · Xiaoshuai Sun · Rongrong Ji

Great Hall & Hall B1+B2 (level 1) #312
[ ] [ Project Page ]
[ Paper [ Poster [ OpenReview
Thu 14 Dec 3 p.m. PST — 5 p.m. PST

Abstract:

Recently, growing interest has been aroused in extending the multimodal capability of large language models (LLMs), e.g., vision-language (VL) learning, which is regarded as the next milestone of artificial general intelligence. However, existing solutions are prohibitively expensive, which not only need to optimize excessive parameters, but also require another large-scale pre-training before VL instruction tuning. In this paper, we propose a novel and affordable solution for the effective VL adaption of LLMs, called Mixture-of-Modality Adaptation (MMA). Instead of using large neural networks to connect the image encoder and LLM, MMA adopts lightweight modules, i.e., adapters, to bridge the gap between LLMs and VL tasks, which also enables the joint optimization of the image and language models. Meanwhile, MMA is also equipped with a routing algorithm to help LLMs achieve an automatic shift between single- and multi-modal instructions without compromising their ability of natural language understanding. To validate MMA, we apply it to a recent LLM called LLaMA and term this formed large vision-language instructed model as LaVIN. To validate MMA and LaVIN, we conduct extensive experiments under two setups, namely multimodal science question answering and multimodal dialogue. The experimental results not only demonstrate the competitive performance and the superior training efficiency of LaVIN than existing multimodal LLMs, but also confirm its great potential as a general-purpose chatbot. More importantly, the actual expenditure of LaVIN is extremely cheap, e.g., only 1.4 training hours with 3.8M trainable parameters, greatly confirming the effectiveness of MMA. Our code is anonymously released at: https://anonymous.4open.science/r/LaVIN--1067.

Chat is not available.