Skip to yearly menu bar Skip to main content


Learning DAGs from Data with Few Root Causes

Panagiotis Misiakos · Chris Wendler · Markus PĆ¼schel

Great Hall & Hall B1+B2 (level 1) #905
[ ] [ Project Page ]
[ Paper [ Poster [ OpenReview
Tue 12 Dec 8:45 a.m. PST — 10:45 a.m. PST

Abstract: We present a novel perspective and algorithm for learning directed acyclic graphs (DAGs) from data generated by a linear structural equation model (SEM). First, we show that a linear SEM can be viewed as a linear transform that, in prior work, computes the data from a dense input vector of random valued root causes (as we will call them) associated with the nodes. Instead, we consider the case of (approximately) few root causes and also introduce noise in the measurement of the data. Intuitively, this means that the DAG data is produced by few data generating events whose effect percolates through the DAG. We prove identifiability in this new setting and show that the true DAG is the global minimizer of the $L^0$-norm of the vector of root causes. For data satisfying the few root causes assumption, we show superior performance compared to prior DAG learning methods.

Chat is not available.