Invited Talk
in
Workshop: Smooth Games Optimization and Machine Learning
Building Algorithms by Playing Games
Jacob D Abernethy
Abstract:
A very popular trick for solving certain types of optimization problems is this: write your objective as the solution of a two-player zero-sum game, endow both players with an appropriate learning algorithm, watch how the opponents compete, and extract an (approximate) solution from the actions/decisions taken by the players throughout the process. This approach is very generic and provides a natural template to produce new and interesting algorithms. I will describe this framework and show how it applies in several scenarios, and describe recent work that draws a connection to the Frank-Wolfe algorithm and Nesterov's Accelerated Gradient Descent.
Chat is not available.