Poster
Efficient and Parsimonious Agnostic Active Learning
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire
210 C #61
[
Abstract
]
Abstract:
We develop a new active learning algorithm for the streaming settingsatisfying three important properties: 1) It provably works for anyclassifier representation and classification problem including thosewith severe noise. 2) It is efficiently implementable with an ERMoracle. 3) It is more aggressive than all previous approachessatisfying 1 and 2. To do this, we create an algorithm based on a newlydefined optimization problem and analyze it. We also conduct the firstexperimental analysis of all efficient agnostic active learningalgorithms, evaluating their strengths and weaknesses in differentsettings.
Live content is unavailable. Log in and register to view live content