Skip to yearly menu bar Skip to main content


Poster

Subsampled Power Iteration: a Unified Algorithm for Block Models and Planted CSP's

Vitaly Feldman · Will Perkins · Santosh Vempala

210 C #101

Abstract:

We present an algorithm for recovering planted solutions in two well-known models, the stochastic block model and planted constraint satisfaction problems (CSP), via a common generalization in terms of random bipartite graphs. Our algorithm matches up to a constant factor the best-known bounds for the number of edges (or constraints) needed for perfect recovery and its running time is linear in the number of edges used. The time complexity is significantly better than both spectral and SDP-based approaches.The main contribution of the algorithm is in the case of unequal sizes in the bipartition that arises in our reduction from the planted CSP. Here our algorithm succeeds at a significantly lower density than the spectral approaches, surpassing a barrier based on the spectral norm of a random matrix.Other significant features of the algorithm and analysis include (i) the critical use of power iteration with subsampling, which might be of independent interest; its analysis requires keeping track of multiple norms of an evolving solution (ii) the algorithm can be implemented statistically, i.e., with very limited access to the input distribution (iii) the algorithm is extremely simple to implement and runs in linear time, and thus is practical even for very large instances.

Live content is unavailable. Log in and register to view live content