Skip to yearly menu bar Skip to main content


Poster

Bounding the Cost of Search-Based Lifted Inference

David B Smith · Vibhav Gogate

210 C #39

Abstract:

Recently, there has been growing interest in systematic search-based and importance sampling-based lifted inference algorithms for statistical relational models (SRMs). These lifted algorithms achieve significant complexity reductions over their propositional counterparts by using lifting rules that leverage symmetries in the relational representation. One drawback of these algorithms is that they use an inference-blind representation of the search space, which makes it difficult to efficiently pre-compute tight upper bounds on the exact cost of inference without running the algorithm to completion. In this paper, we present a principled approach to address this problem. We introduce a lifted analogue of the propositional And/Or search space framework, which we call a lifted And/Or schematic. Given a schematic-based representation of an SRM, we show how to efficiently compute a tight upper bound on the time and space cost of exact inference from a current assignment and the remaining schematic. We show how our bounding method can be used within a lifted importance sampling algorithm, in order to perform effective Rao-Blackwellisation, and demonstrate experimentally that the Rao-Blackwellised version of the algorithm yields more accurate estimates on several real-world datasets.

Live content is unavailable. Log in and register to view live content