### Poster

## On the Limitation of Spectral Methods: From the Gaussian Hidden Clique Problem to Rank-One Perturbations of Gaussian Tensors

### Andrea Montanari · Daniel Reichman · Ofer Zeitouni

##### 210 C #87

[
Abstract
]

Abstract:
We consider the following detection problem: given a realization of asymmetric matrix $X$ of dimension $n$, distinguish between the hypothesisthat all upper triangular variables are i.i.d. Gaussians variableswith mean 0 and variance $1$ and the hypothesis that there is aplanted principal submatrix $B$ of dimension $L$ for which all upper triangularvariables are i.i.d. Gaussians with mean $1$ and variance $1$, whereasall other upper triangular elements of $X$ not in $B$ are i.i.d.Gaussians variables with mean 0 and variance $1$. We refer to this asthe `Gaussian hidden clique problem'. When $L=( 1 + \epsilon) \sqrt{n}$ ($\epsilon > 0$), it is possible to solve thisdetection problem with probability $1 - o_n(1)$ by computing thespectrum of $X$ and considering the largest eigenvalue of $X$.We prove that when$L < (1-\epsilon)\sqrt{n}$ no algorithm that examines only theeigenvalues of $X$can detect the existence of a hiddenGaussian clique, with error probability vanishing as $n \to \infty$.The result above is an immediate consequence of a more general result on rank-oneperturbations of $k$-dimensional Gaussian tensors.In this context we establish a lower bound on the criticalsignal-to-noise ratio below which a rank-one signal cannot be detected.

Live content is unavailable. Log in and register to view live content