Skip to yearly menu bar Skip to main content


Session

Oral Session 6: Theory, Optimization and Games

Ben Taskar

Abstract:
Chat is not available.

Wed 9 Dec. 10:40 - 11:00 PST

Efficient Learning using Forward-Backward Splitting

John Duchi · Yoram Singer

We describe, analyze, and experiment with a new framework for empirical loss minimization with regularization. Our algorithmic framework alternates between two phases. On each iteration we first perform an {\em unconstrained} gradient descent step. We then cast and solve an instantaneous optimization problem that trades off minimization of a regularization term while keeping close proximity to the result of the first phase. This yields a simple yet effective algorithm for both batch penalized risk minimization and online learning. Furthermore, the two phase approach enables sparse solutions when used in conjunction with regularization functions that promote sparsity, such as $\ell_1$. We derive concrete and very simple algorithms for minimization of loss functions with $\ell_1$, $\ell_2$, $\ell_2^2$, and $\ell_\infty$ regularization. We also show how to construct efficient algorithms for mixed-norm $\ell_1/\ell_q$ regularization. We further extend the algorithms and give efficient implementations for very high-dimensional data with sparsity. We demonstrate the potential of the proposed framework in experiments with synthetic and natural datasets.

Wed 9 Dec. 11:00 - 11:20 PST

On Stochastic and Worst-case Models for Investing

Elad Hazan · Satyen Kale

In practice, most investing is done assuming a probabilistic model of stock price returns known as the Geometric Brownian Motion (GBM). While it is often an acceptable approximation, the GBM model is not always valid empirically. This motivates a worst-case approach to investing, called universal portfolio management, where the objective is to maximize wealth relative to the wealth earned by the best fixed portfolio in hindsight. In this paper we tie the two approaches, and design an investment strategy which is universal in the worst-case, and yet capable of exploiting the mostly valid GBM model. Our method is based on new and improved regret bounds for online convex optimization with exp-concave loss functions.

Wed 9 Dec. 11:20 - 11:40 PST

Bootstrapping from Game Tree Search

Joel Veness · David Silver · William Uther · Alan Blair

In this paper we introduce a new algorithm for updating the parameters of a heuristic evaluation function, by updating the heuristic towards the values computed by an alpha-beta search. Our algorithm differs from previous approaches to learning from search, such as Samuel's checkers player and the TD-Leaf algorithm, in two key ways. First, we update all nodes in the search tree, rather than a single node. Second, we use the outcome of a deep search, instead of the outcome of a subsequent search, as the training signal for the evaluation function. We implemented our algorithm in a chess program Meep, using a linear heuristic function. After initialising its weight vector to small random values, Meep was able to learn high quality weights from self-play alone. When tested online against human opponents, Meep played at a master level, the best performance of any chess program with a heuristic learned entirely from self-play.

Wed 9 Dec. 11:40 - 12:00 PST

Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions

Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf

Embeddings of probability measures into reproducing kernel Hilbert spaces have been proposed as a straightforward and practical means of representing and comparing probabilities. In particular, the distance between embeddings (the maximum mean discrepancy, or MMD) has several key advantages over many classical metrics on distributions, namely easy computability, fast convergence and low bias of finite sample estimates. An important requirement of the embedding RKHS is that it be characteristic: in this case, the MMD between two distributions is zero if and only if the distributions coincide. Three new results on the MMD are introduced in the present study. First, it is established that MMD corresponds to the optimal risk of a kernel classifier, thus forming a natural link between the distance between distributions and their ease of classification. An important consequence is that a kernel must be characteristic to guarantee classifiability between distributions in the RKHS. Second, the class of characteristic kernels is broadened to incorporate all bounded, continuous strictly positive definite kernels: these include non-translation invariant kernels and kernels on non-compact domains. Third, a generalization of the MMD is proposed for families of kernels, as the supremum over MMDs on a class of kernels (for instance the Gaussian kernels with different bandwidths). This extension is necessary to obtain a single distance measure if a large selection or class of characteristic kernels is potentially appropriate. This generalization is reasonable, given that it corresponds to the problem of learning the kernel by minimizing the risk of the corresponding kernel classifier. The generalized MMD is shown to have consistent finite sample estimates, and its performance is demonstrated on a homogeneity testing example.