First Order Constrained Optimization in Policy Space
Yiming Zhang, Quan Vuong, Keith Ross
Spotlight presentation: Orals & Spotlights Track 04: Reinforcement Learning
on 2020-12-07T19:00:00-08:00 - 2020-12-07T19:10:00-08:00
on 2020-12-07T19:00:00-08:00 - 2020-12-07T19:10:00-08:00
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: In reinforcement learning, an agent attempts to learn high-performing behaviors through interacting with the environment, such behaviors are often quantified in the form of a reward function. However some aspects of behavior—such as ones which are deemed unsafe and to be avoided—are best captured through constraints. We propose a novel approach called First Order Constrained Optimization in Policy Space (FOCOPS) which maximizes an agent's overall reward while ensuring the agent satisfies a set of cost constraints. Using data generated from the current policy, FOCOPS first finds the optimal update policy by solving a constrained optimization problem in the nonparameterized policy space. FOCOPS then projects the update policy back into the parametric policy space. Our approach has an approximate upper bound for worst-case constraint violation throughout training and is first-order in nature therefore simple to implement. We provide empirical evidence that our simple approach achieves better performance on a set of constrained robotics locomotive tasks.