This is the public, feature-limited version of the conference webpage. After Registration and login please visit the full version.

Adversarial Training is a Form of Data-dependent Operator Norm Regularization

Kevin Roth, Yannic Kilcher, Thomas Hofmann

Spotlight presentation: Orals & Spotlights Track 20: Social/Adversarial Learning
on Wed, Dec 9th, 2020 @ 15:20 – 15:30 GMT
Poster Session 4 (more posters)
on Wed, Dec 9th, 2020 @ 17:00 – 19:00 GMT
Abstract: We establish a theoretical link between adversarial training and operator norm regularization for deep neural networks. Specifically, we prove that $l_p$-norm constrained projected gradient ascent based adversarial training with an $l_q$-norm loss on the logits of clean and perturbed inputs is equivalent to data-dependent (p, q) operator norm regularization. This fundamental connection confirms the long-standing argument that a network’s sensitivity to adversarial examples is tied to its spectral properties and hints at novel ways to robustify and defend against adversarial attacks. We provide extensive empirical evidence on state-of-the-art network architectures to support our theoretical results.

Preview Video and Chat

To see video, interact with the author and ask questions please use registration and login.